16 research outputs found

    Dual Programmed Cell Death Pathways Induced by p53 Transactivation Overcome Resistance to Oncolytic Adenovirus in Human Osteosarcoma Cells

    Get PDF
    Tumor suppressor p53 is a multifunctional transcription factor that regulates diverse cell fates, including apoptosis and autophagy in tumor biology. p53 overexpression enhances the antitumor activity of oncolytic adenoviruses; however, the molecular mechanism of this occurrence remains unclear. We previously developed a tumor-specific replication-competent oncolytic adenovirus, OBP-301, that kills human osteosarcoma cells, but some human osteosarcoma cells were OBP-301-resistant. In this study, we investigated the antitumor activity of a p53-expressing oncolytic adenovirus, OBP-702, and the molecular mechanism of the p53-mediated cell death pathway in OBP-301-resistant human osteosarcoma cells. The cytopathic activity of OBP-702 was examined in OBP-301-sensitive (U2OS and HOS) and OBP-301-resistant (SaOS-2 and MNNG/HOS) human osteosarcoma cells. The molecular mechanism in the OBP-702-mediated induction of two cell death pathways, apoptosis and autophagy, was investigated in OBP-301-resistant osteosarcoma cells. The antitumor effect of OBP-702 was further assessed using an orthotopic OBP-301-resistant MNNG/HOS osteosarcoma xenograft tumor model. OBP-702 suppressed the viability of OBP-301-sensitive and -resistant osteosarcoma cells more efficiently than OBP-301 or a replication-deficient p53-expressing adenovirus (Ad-p53). OBP-702 induced more profound apoptosis and autophagy when compared with OBP-301 or Ad-p53. E1A-mediated miR-93/106b upregulation induced p21 suppression, leading to p53-mediated apoptosis and autophagy in OBP-702-infected cells. p53 overexpression enhanced adenovirus-mediated autophagy through activation of damage-regulated autophagy modulator (DRAM). Moreover, OBP-702 suppressed tumor growth in an orthotopic OBP-301-resistant MNNG/HOS xenograft tumor model. These results suggest that OBP-702-mediated p53 transactivation is a promising antitumor strategy to induce dual apoptotic and autophagic cell death pathways via regulation of miRNA and DRAM in human osteosarcoma cells. Mol Cancer Ther; 12(3); 314-25

    Mechanism of resistance to trastuzumab and molecular sensitization via ADCC activation by exogenous expression of HER2-extracellular domain in human cancer cells

    Get PDF
    Trastuzumab, a humanized antibody targeting HER2, exhibits remarkable therapeutic efficacy against HER2-positive breast and gastric cancers; however, acquired resistance presents a formidable obstacle to long-term tumor responses in the majority of patients. Here, we show the mechanism of resistance to trastuzumab in HER2-positive human cancer cells and explore the molecular sensitization by exogenous expression of HER2-extracellular domain (ECD) in HER2-negative or trastuzumab-resistant human cancer cells. We found that long-term exposure to trastuzumab induced resistance in HER2-positive cancer cells; HER2 expression was downregulated, and antibody-dependent cellular cytotoxicity (ADCC) activity was impaired. We next examined the hypothesis that trastuzumab-resistant cells could be re-sensitized by the transfer of non-functional HER2-ECD. Exogenous HER2-ECD expression induced by the stable transfection of a plasmid vector or infection with a replication-deficient adenovirus vector had no apparent effect on the signaling pathway, but strongly enhanced ADCC activity in low HER2-expressing or trastuzumab-resistant human cancer cells. Our data indicate that restoration of HER2-ECD expression sensitizes HER2-negative or HER2-downregulated human cancer cells to trastuzumab-mediated ADCC, an outcome that has important implications for the treatment of human cancers

    Development of a rhythmic auditory biofeedback system to assist improving the kinetic chain for bat swing performance

    No full text
    Abstract Baseball has been enjoyed by many generations and there are many people who play the game. Swing speed increases are generally required to develop ideal batting skill; nevertheless, no study has proposed a system to swing speed and develop an idea swing performance kinetic chain using auditory biofeedback, which is often used for motor modification. Thus, the purpose of our study was to devise a system that allows users to develop their kinetic chains and increase swing speeds using auditory cues, and to verify the proposed system’s effect in the bat swing performance of novices. We developed a system that output auditory cues (i.e., sound) linked with body motion. First, we conducted an experiment to confirm whether our proposed method could detect the difference between skilled players and beginners. Second, we applied the system to a tee-batting task in 22 novice baseball players. Using our proposed system, participants could increase swing speed and acquire a better kinetic chain in upper body motion but not in trunk motion. We expect this system is, in part, applicable to developing swing performance that requires sequential motion. This auditory biofeedback system warrants further investigation
    corecore